Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

John G. O'Brien, Katherine E. Grousnick and Russell G. Baughman*

Division of Science, Truman State University, Kirksville, MO 63501-0828, USA

Correspondence e-mail:
baughman@truman.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.058$
ωR factor $=0.159$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Cyano-2'-nitrodiazoaminobenzene

All atoms except for the two O atoms in the title compound, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$, are essentially coplanar as the nitro group is twisted by 12.0 (3) ${ }^{\circ}$ with respect to its phenyl ring. The near planarity of the entire system is stabilized by an intramolecular hydrogen bond involving the nitro group which also limits the possible resonance forms of this molecule. The cyano group is slightly bent.

Comment

The structure of the title compound, (I), was undertaken to establish its structure as a precursor in the synthesis of a larger molecule. Specifically, a new route was sought to form a bond between an N and an aromatic C atom. Confirmation by X-ray analysis was deemed to be useful.

(I)

The rings in this molecule stack alternately via the inversion and translation along the a axis at interplanar distances which are consistent with π interactions; the distances correspond to the thickness ($3.4 \AA$) of an aromatic ring (Pauling, 1960). The distance from the least-squares plane of the C7-C12 ring to the atoms in the C1-C6 ring (via inversion and translation of +1 in x) is $3.50(3) \AA$; similarly, from the C1-C6 ring to C7C12, 3.46 (3) A.

The molecular skeleton is nearly planar as the maximum deviation from a least-squares plane involving all C and N atoms is 0.039 (3) \AA for C12. The r.m.s. deviation for these fitted atoms is $0.020 \AA$. O1 lies 0.277 (4) \AA above the plane; $\mathrm{O} 2,0.174$ (4) \AA below. The $\mathrm{C} 2 / \mathrm{N} 1 / \mathrm{O} 1 / \mathrm{O} 2$ group has an r.m.s. deviation of $0.001 \AA$, while the plane of the nitro group is at an angle of $12.0(3)^{\circ}$ to the least-squares plane of the C1-C6 ring.

The cyano group is significantly $(\sim 8 \sigma)$ bent [C8-C13$\left.\mathrm{N} 5=176.7(4)^{\circ}\right]$. This is likely due to intermolecular hydrogen bonds or dipole-dipole interactions (see Table 2) with O1, O2 and N 5 and ring H atoms in adjoining molecules in the $b c$ plane.

The intramolecular hydrogen bond between H 2 a and O 2 (cf. Tables 1 and 2) restricts not only the rotation of the nitro group, but, as H2a is on N 2 , the probability of other resonance

Received 6 August 2001 Accepted 3 September 2001 Online 20 September 2001

Figure 1
View of the title molecule showing the labeling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels; H atoms are drawn as small spheres of arbitrary radii.
structures. It is likely that only the resonance structure shown in the Scheme makes a significant contribution, as is supported by the long $\mathrm{N} 2-\mathrm{N} 3$ bond length $[1.337$ (3) \AA A and the short $\mathrm{N} 3-\mathrm{N} 4$ bond length $[1.258$ (3) \AA]. N2-N3 is primarily a single bond; $\mathrm{N} 3-\mathrm{N} 4$, a double bond. To a lesser degree this is further corroborated by the $\mathrm{O} 1-\mathrm{N} 1$ bond length $[1.220$ (3) \AA] being 5σ shorter than the $\mathrm{O} 2-\mathrm{N} 1$ bond $[1.235(3) \AA]$, although this difference is not sufficient to prove that these bonds are localized double and single bonds, respectively. Presence of the intramolecular hydrogen bond is also supported by ${ }^{1} \mathrm{H}$ NMR, which shows a shift of 12.2 p.p.m. for H2a, indicating a high degree of deshielding. An additional consequence of the intramolecular hydrogen bond is that N 1 is slightly off the center line from C 5 to $\mathrm{C} 2[\mathrm{C} 5 \cdots \mathrm{C} 2-\mathrm{N} 1=$ $\left.177.0(2)^{\circ}\right]$.

In both rings a pattern of $\mathrm{C} \cdots \mathrm{C}$ bond length differences is consistent with the proximity of the three electron-withdrawing groups. The bonds involving C 1 and $\mathrm{C} 2(\mathrm{C} 1-\mathrm{C} 2$, $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 2-\mathrm{C} 3$) are significantly ($>5 \sigma$) longer than those which are two bonds away from the groups involving N 1 and N 2 (e.g. C3-C4 and C5-C6). Similarly, bonds involving C7 and $\mathrm{C} 8(\mathrm{C} 7-\mathrm{C} 8, \mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 8-\mathrm{C} 9)$ are significantly $(>5 \sigma)$ longer than $\mathrm{C} 9-\mathrm{C} 10, \mathrm{C} 10-\mathrm{C} 11$ and $\mathrm{C} 11-\mathrm{C} 12$. In both rings the longest $\mathrm{C}-\mathrm{C}$ bond lengths are adjacent to a substituent, while the shortest lengths are two bonds away from the nearest substituent.

Experimental

Following a standard synthesis (Furniss et al., 1989), the diazonium salt formed by the reaction of m-nitroaniline with sodium nitrite was allowed to react with anthranilonitrile (2 -aminobenzonitrile). The bright yellow product formed was purified via chromatography (silica gel with chloroform as the eluent) and recrystallized by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a CHCl_{3} solution of the product. Analysis of the product by ${ }^{1} \mathrm{H}$ NMR was consistent with the formation of the desired $\mathrm{C}-\mathrm{N}$ bond. MS data indicated that the mass of the title compound was 28 Daltons greater than what was originally expected, prior to the X-ray study, for a compound with but one N atom between the rings.

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \quad Z=2$
$M_{r}=267.25$
Triclinic, $P \overline{1}$
$a=7.2080$ (10) \AA
$b=8.0106$ (12) \AA
$c=12.256$ (2) \AA
$\alpha=79.099(7)^{\circ}$
$\beta=74.695$ (4) ${ }^{\circ}$
$\gamma=69.379(6)^{\circ}$
$V=635.2$ (2) \AA^{3}
$D_{x}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 100 reflections
$\theta=5.2-12.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Triangular plate, yellow
$0.55 \times 0.40 \times 0.18 \mathrm{~mm}$

Data collection

Siemens Bruker P4 diffractometer $\theta / 2 \theta$ scans
2825 measured reflections
2247 independent reflections
1303 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0913 P)^{2}\right. \\
& \quad+0.1553 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

O1-N1	$1.220(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.367(4)$
O2-N1	$1.235(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.397(4)$
N1-C2	$1.453(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.370(4)$
N2-N3	$1.337(3)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.390(4)$
N2-C1	$1.380(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.399(4)$
N3-N4	$1.258(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.389(4)$
N4-C7	$1.418(4)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.438(5)$
N5-C13	$1.119(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.364(5)$
C1-C2	$1.407(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.380(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.408(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.380(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.389(4)$		
O1-N1-O2	$121.0(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$117.1(3)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 2$	$119.0(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$121.5(3)$
O2-N1-C2	$120.0(3)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$118.6(3)$
N3-N2-C1	$120.1(2)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{N} 4$	$125.0(3)$
N4-N3-N2	$112.0(2)$	$\mathrm{C} 5-\mathrm{C} 2-\mathrm{N} 1$	$177.0(2)$
N3-N4-C7	$113.0(2)$	$\mathrm{N} 5-\mathrm{C} 13-\mathrm{C} 8$	$176.7(4)$
N2-C1-C2	$122.9(3)$	$\mathrm{N} 1-\mathrm{O} 2-\mathrm{H} 2 \mathrm{a}$	106
N2-C1-C6	$120.2(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{a} \cdots \mathrm{O} 2$	0.90	1.98	$2.622(3)$	128
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.96	2.90	$3.468(4)$	119
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{i}}$	0.96	2.61	$3.327(4)$	132
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N}^{\mathrm{ii}}$	0.96	2.70	$3.573(5)$	152
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~N} 5^{\mathrm{i}}$	0.96	2.62	$3.473(5)$	148
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	0.96	3.09	$3.562(5)$	112
$\mathrm{C}^{\mathrm{i}} 2-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.58	$3.308(4)$	133

[^0]Constrained bond lengths $\mathrm{C}-\mathrm{H} 0.96 \AA$; N $-\mathrm{H} 0.90 \AA$. H2a was first located in a difference map, then placed into an ideal position. All other H's were placed in ideal positions (riding).

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991); cell refinement: P3/P4-PC Diffractometer Program; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS90 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXTL/PC and SHELXL93.

References

Furniss, B. S., Hannaford, A. J., Smith, P. W. G. \& Tatchell, A. R. (1989). Editors. Vogel's Textbook of Practical Organic Chemistry, 5th ed., p. 952. London: Longman.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell University Press.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Siemens (1991). P3/P4-PC Diffractometer Program (Version 4.23) and XDISK. (Version 4.20.2PC). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y, 1-z$.

